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Tumour segmentation in breast tissue
microarray images using spin-context
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Abstract

A method for automatic segmentation of tumour regions in breast histopathology
images is described. It uses auto-context to label pixels based on local image features
and contextual label probabilities. We propose spin-context to compute context features
that are invariant under image rotation. Quantitative evaluation is reported using spots
stained for estrogen receptor. The use of context resulted in improved segmentation.

1 Introduction
Tissue microarrays (TMAs) are used extensively to analyse various types of cancer for
molecular and protein markers. Annotation software for breast tissue histopathology images
often requires a pathologist to partially annotate some tissue components in order for the
software to then analyse a whole mount slide. When applied to TMA spots, typically 0.6mm
in diameter, regions are often mislabelled due to lack of context. In this paper a method is
reported that probabilistically classifies pixels as non-tumour or tumour (invasive or in-situ
carcinoma). We propose a distribution-based auto-context descriptor called spin-context and
report results on estrogen-receptor stained TMA images (‘spots’) by comparison to manual
segmentation performed by a pathologist.

2 Related Work
Related work on tumour segmentation includes that of Chomphuwiset et al. [1], who used
Hough transform-based techniques to detect cell nuclei in liver histopathology images. Chom-
phuwiset et al. also integrate a Bayesian network to combine random forest classification
results, obtained from texture features, with context information from nearby nuclei and
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regions. Wang et al. [9] proposed a method for segmentation of tumour, stroma and in-
flammatory cells in TMA images using tissue architecture extraction and a tumour texture
learning model. Tissue architecture extraction consisted of a stain separation method and
an unsupervised multistage entropy-based segmentation method. Tumour texture learning
consisted of a Markov random field image segmentation system.

Auto-context has been used for medical image segmentation. Morra et al. [5] used Ad-
aBoost with auto-context to segment hippocampus in 3D structural MRI. Tu et al. [8] used
auto-context to segment multiple structures in brain MRI. Tao et al. [7] used Gaussian mix-
tures with simplified auto-context to segment ground glass nodules in 3D lung CT data.
Montillo et al. [4] segmented structures such as aorta, pelvis, and lungs in 3D CT data,
proposing an extension of decision forest classifiers that incorporates semantic context in a
manner similar to auto-context. Jurrus et al. [2] described an auto-context method to detect
membranes in electron micrographs. All of the above were not distribution-based descriptors
and, appropriately for those applications, were not invariant under image rotation. To the best
of our knowledge, auto-context has not been applied to segmentation of 2D histopathology
images.

3 Method
We address locating carcinoma (invasive or in situ) in TMA spots. This is formulated as
classifying each location on a grid as being tumour or non-tumour. The image patch around
each location is characterised using local features extracted at full resolution, specifically
differential invariants up to 2nd order [6] and intensity spin image features [3]. We propose
a method called spin-context which incorporates context in a rotationally invariant fashion,
as the rotation of the tissue in histopathology images is arbitrary. Before describing spin-
context we briefly describe auto-context classification [8] and spin image features [3].

Intensity-domain spin image features were proposed for texture representation [3]. A
spin feature encodes the distribution of brightness values within a circular support region
centred at a location, x0, using a histogram representation that is invariant under image rota-
tion. The contribution of a pixel x depends on its intensity value, I(x), and its distance from
x0, ||x− x0||, as shown in Equation (1). α and β are parameters that determine bin size in
the two-dimensional ‘soft’ histogram, H, where each bin is indexed by the radial distance
interval, d, and intensity interval, i.

H(d,i) = ∑
x
exp(− (||x−x0||−d)2

2α2 − |I(x)− i|2
2β 2 ) (1)

The auto-context method, proposed by Tu and Bai in 2009 [8], is an iterative pixel la-
belling technique, in which some of the label probabilities output at a given iteration are used
as contextual data that are concatenated with local image features to form the input vector
for the following iteration. This technique is formally described in Algorithm 1, where, for
pixel n, tn is the ground truth value (0 for background, 1 for tumour), zn is the local feature
vector, cn is the context feature vector, and yn is the predicted probability of being tumour.
Classifier models are denoted by φ , and N is the index set for all pixels (training and test-
ing). In a cross-validation experiment (e.g. ten-fold), at the start of each fold p we (1)
initialise all pixel probabilities with a uniform prior; and (2) identify the set of training pixel
indices. Then, at each auto-context iteration j, we (a) compute a context feature vector from
the probability values predicted at the previous iteration, for all pixels; (b) train a classifier
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Algorithm 1 Auto-context.
1. initialise ynp.0, for n ∈ N

2. identify N train
p ⊂ N

3. for each iteration j

(a) compute cnp, j from ynp, j−1, for n ∈ N

(b) train φp, j to predict tn from zn and cnp, j, for n ∈ N train
p

(c) use φp, j to predict ynp, j from zn and cnp, j, for n ∈ N

to predict truth values from local and context feature vectors, for training pixels; and (c) use
the trained classifier to predict new probability values from local and context feature vectors,
for all pixels.

3.1 Spin-context
Tu and Bai used a star shaped ‘stencil’ to select context location points around the pixel being
classified. The resulting context features from this stencil were not invariant under image
rotation. By using an alternative spin-context, we can compute rotationally invariant context
features for a given grid location from label probability values within a circular support
region. Spin-context is extracted analogously to intensity spin features, computing a two-
dimensional ‘soft’ histogram reflecting the distribution of probabilities within the support
region, with rows representing probability intervals and columns representing radial distance
intervals. Figure 1 illustrates spin-context for a given support region.

Figure 1: Spin-context constructs context descriptions for a point to be classified (the blue
dot) by applying a circular support region centred on that location. The resulting classifica-
tion map produced by the MLP classifier updates context descriptors iteratively.

The spin-context descriptor allows clutter outside the tissue spot’s boundary to be dis-
regarded while considering only data within the spot region. Figure 2 illustrates the advan-
tage of using spin-context to produce a more accurate representation of context information
around the boundaries of the spot. The use of boundary information prior to context extrac-
tion allows the contributions of out-of-boundary points towards the two-dimensional spin
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Figure 2: A binary mask is used to ignore the contributions of pixels outside the spot’s bound-
ary towards the spin histogram. Stencil-context, however, corresponds to label probability
values at all locations lying on a star-shaped stencil, regardless of spot boundaries.

histogram to be ignored. In doing so, not only is context information accurate for the current
iteration but subsequent iterations also reflect on accurate information extracted from the
spot region. The stencil-context descriptor, not being distribution-based, does not allow this
level of flexibility to be maintained, resulting in background interference.

4 Experiments
TMA spots were subjected to nuclear staining for estrogen receptor (ER). Spot images were
4000× 4000 pixels. Data consisted of 64 images, 32 of which contained tumour regions
annotated by a highly experienced pathologist and 32 were confirmed to contain only healthy
tissue. Example pathologist annotations are shown in Figure 4.

(a) (b)

Figure 3: Precision-recall curves for tumour localisation. (a) Effect of six spin-context itera-
tions on MLP classification. (b) Comparison of stencil-context and spin-context for iteration
4 on MLP classification.

Tumour labelling was evaluated using ten-fold cross-validation on the 64 spots. Multi-
layer percepton (MLP) classifiers had five hidden units, a regularisation constant of 0.1 and
used scaled conjugate gradient optimisation. Local and context features were computed
at points on a 76×76 grid (a grid step of 50 pixels). Differential invariant features were
computed at three scales using a Gaussian pyramid and filters with a standard deviation of
8 pixels. Intensity spin local features were computed at two scales (again using a Gaussian
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pyramid) with a circular support region with a radius of 50 pixels. Spin-context used a
circular support region with a radius of six grid points. We also tried auto-context (non-
rotationally invariant context) using a stencil in which neighbouring grid points within a
radius of six grid spacings in each of the eight cardinal and inter-cardinal compass directions
were used as context. Labellings obtained were compared to ground-truth segmentations
provided by the pathologist to compute precision-recall curves.

5 Results
The precision-recall curve in Figure 3(a) displays the results obtained for six spin-context
iterations. All six iterations of spin-context improved results, however this improvement
was noticeable in the initial four iterations, whereas the subsequent two iterations improved
results marginally. Figure 3(b) compares spin-context with stencil based auto-context. At
lower recall values spin-context was superior. In both cases MLP classifiers were used and
six context iterations were executed.

original annotation iteration 1 iteration 2 iteration 3

(a)

(b)

(c)

Figure 4: Tumour location probabilities obtained by spin-context. Shown for each TMA spot
are the pathologist’s annotation, the labelling obtained using local image features (iteration
1) and labellings obtained after incorporating label context (iteration 2 and iteration 3). (a)
shows invasive cancer labelled largely in agreement with the pathologist. (b) shows healthy
tissue. (c) shows one of the worst results obtained.

Figure 4 shows three spots, two containing tumour and one not containing tumour, along
with their expert annotations and the outputs of the spin-context method. In Figure 4(a),
posterior probabilities within tumour regions increased at each iteration, so that after the final
iteration they were above 0.9 for most tumour pixels. In Figure 4(b), non-zero probabilities
occur within regions of normal tissue at the first iteration; however, their values decreased
after further iterations, so that a binarisation of the labelling would result in an almost entirely
empty (i.e. correct) output. Figure 4(c) shows a case of unsuccessful labelling. Initially, the
entire spot region was lightly detected and gradually removed from the left after subsequent
iterations. This may have been due to the higher density of tissue which is commonly found
in tumour regions in training data. This suggests the need for more training examples of this
type.
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6 Conclusion
A method for tumour segmentation was presented incorporating rotationally invariant con-
text features. It was validated against manual annotations provided by a pathologist. Figure 4
shows how spin-context can be useful to pathology research in locating tumour regions.
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