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Abstract

In this work, we present a method to segment carotid vessels from CT scans. Image

denoising is performed using vessel enhancing diffusion, which can smooth out image

noise and enhance vessel structures. The Canny edge detection technique which produces

object edges with single pixel width is used for accurate detection of the lumen bound-

aries. The image gradients are then used to compute the geometric potential field which

gives a global representation of the geometric configuration. The deformable model uses

a regional constraint to suppress calcified regions for accurate segmentation of the vessel

geometries. The preliminary result shows the prosed method achieves promising results

based on qualitative evaluation using manual labelled groundtruth.

1 Introduction

The human circulatory system consists of vessels that transport blood throughout the body,

providing the tissues with oxygen and nutrients. It is known that vascular diseases such as

stenosis and aneurysms are often associated with changes in blood flow patterns and the dis-

tribution of wall shear stress. Modelling and analysis of the hemodynamics in the human

vascular system can improve our understanding of vascular disease, and provide valuable

insights which can help in the development of efficient treatment methods. One of the main

challenges is the accurate reconstruction of the vascular geometry. The anatomical informa-

tion used to reconstruct the geometric models are usually provided in the form of medical

image datasets (scans) from imaging modalities such as computed tomography (CT) and

magnetic resonance (MR) imaging. Manual reconstruction of the vasculature geometries

can be tedious and time consuming. There is also the issue of variability between the ge-

ometries extracted manually by different individuals, and variability of geometries extracted

by the same individual at different occasions.

Although several techniques exist for the segmentation of vascular structures from medi-

cal images, it remains an intricate process due to factors such as image noise, partial volume
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effects, image artifacts, intensity inhomogeneity and changes in topology. In [11], the coor-

dinate points for the center line of the aortic arch were extracted from volume rendered MR

images. A cubic spline was then used to represent the aortic centerline, and cross-sectional

grids were generated on normal planes at equidistant points along the curve. This gener-

ated a curved tube with circular cross section of uniform radius, which is not representative

of the geometry of the aorta. In [15], the centerline and diameter information of the ves-

sels was extracted from the image dataset, and the vascular model was reconstructed using

non-uniform rational B-splines (NURBS). Such techniques may often smooth out geometric

information that can be important to the computation of accurate flow dynamics, such as

those at bifurcations.

The 3D models of the vascular structures are commonly reconstructed by extracting the

2D contours of the vessels at each of the image slices, and then lofting through the contours

to create the surface models of the vessels, e.g. [3, 16, 19]. In [8, 9], a 3D dynamic surface

model was used to delineate the boundary of carotid arteries. An initial triangulated model

was placed within the interior of the carotid vessels, and an inflation force was applied to

deform the model towards the vessel wall. In particular, the inflation force is applied only

when the vertices of the model are within the lumen, i.e., at locations with image intensity

below a user-specified threshold. An image-based force is further applied to the surface

model to better localize the boundary. It may however be difficult to select an appropriate

threshold value that delineates the vessel wall closely due to inhomogeneous image intensity.

This approach is sensitive to noise, and manual editing is often required to move the vertices

towards the vessel wall. In [13], a 2D discrete dynamic contour was first used to extract the

vessel contours, a dynamic surface model was then inflated to reconstruct the surface model

using the binary images of the extracted contours. This however does not consider the 3D

geometric information from the image dataset. In [4, 5, 18], the surface models for each of

the vessel branches of the carotid artery were reconstructed independently using a tubular

deformable model. A surface merging algorithm is then required to reconstruct the surface

model of the carotid bifurcation from the triangulated surfaces of the vessel branches. This

particular approach requires the determination of the axis of each of the vessels, which can

be done manually by selecting a reasonable amount of points from image slices to represent

the curves of the structure. Due to the smoothing effect of this technique, regions of high

curvature such as those at bifurcations or stenosis may not be modeled accurately. These

explicit deformable models represent contours and surfaces parametrically, which requires

the tracking of points on the curves and surfaces during deformation. It is therefore difficult

for explicit deformable models to deal with topological variation and complex shapes.

Implicit deformable models have been applied in the segmentation of vascular structures

in [1, 2, 6, 12, 14]. However, many of these techniques use an attraction force field which

acts on contours or surfaces only when they are close to the object boundaries. As such,

initial contours have to be placed close to the object boundaries, which can be tedious in

complex geometries. A constant pressure term such as the one in [10], is often used to

monotically expand or shrink the deformable model towards the image object boundaries,

which can overwhelm weak object edges. In addition, the initial contours have to be placed

either inside or outside object boundaries, which can be difficult for compact and narrow

structures. Many of these techniques are also sensitive to image noise, and have difficulties

in extracting deep boundary concavities.
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2 Proposed Method

We propose a 3D deformable model based segmentation method to extract the carotid struc-

tures. The carotid vessels are first enhanced by applying anisotropic diffusion, and then

vessel edges are localised using Canny edge detection which provides better edge localisa-

tion and connectivity compared to other conventional techniques, such as Sobel. The images

gradient vectors at those edge locations identified by Canny edge detector are then used to

compute a geometric potential field which gives a global representation of the geometric

configuration. This field is then used to drive a 3D deformable model, with an additional

simplistic regional constraint to suppress the interference from vessel calcificcation.

2.1 Vessel enhancing and edge detection

The formulation of the vessel enhancing diffusion filter is based on a smoothed version of the

vesselness measure used in [7]. In this approach, an anisotropic diffusion filter with strength

and direction determined by the vesselness measure is applied to enhance the geometric

structures of the vessel. The vesselness measure is determined by analyzing the eigensystem

of the Hessian matrix given as:

H=





Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz



 (1)

which describes the geometric information at each point of a 3D image I based on the lo-

cal intensity variations. Here, the derivatives of the image I are computed as convolution

with derivatives of the Gaussian function, i.e. Ix = I(x) ∗ ∂
∂xGσ (x), where Gσ denotes the

Gaussian function with standard deviation σ . The principal curvatures and directions are

given by the maximum and minimum eigenvalues and the corresponding eigenvectors. With

the eigenvalues given such that |λ1| ≤ |λ2| ≤ |λ3|, the vesselness measure is defined as: if

λ2 ≥ 0 or λ3 ≥ 0,Vσ (λ )= 0; otherwiseVσ (λ )=
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in which RA and RB can be used to differentiate

tubular structures from blob-like and plate-like structures, while S is used to differentiate

between foreground vessel structures and background noise. The parameters α , β and γ are

weighting factors which control the sensitivity of the vesselness measure, and c is a small

constant.

For a multiscale analysis, the vesselness function is computed for a range of scales, and

the maximum response is selected using the following equation: V =maxσmin≤σ≤σmax Vσ (λ )A
diffusion tensor is then defined such that vessel diffusion takes place in the direction of the

vessel, while diffusion perpendicular to the vessel direction is inhibited. The diffusion tensor

can therefore be used to preserve vessel structures and is given as: D=Qλ QTwhere Q is a

matrix containing the eigenvectors of the Hessian matrix H, and λ  is a diagonal matrix with

elements given as: λ1
 = 1+(w− 1) ·V 1

s , λ2
 = λ3

 = 1+(ε − 1) ·V 1
s with w, ε and s as

tuning parameters. The anisotropic diffusion is then defined as: Lt = ∇ · (D∇L)where L(0)
is set as the input image.

The Canny edge detection can produce object edges with single pixel width, and can

therefore be used for more accurate edge detection of the vessel structures. The image gra-
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Figure 1: Segmentation of carotid artery from CT image dataset.

dients at the detected edges are then used to compute the geometric potential field, which is

briefly described in the following section.

2.2 GPF based segmentation with a simplistic region constraint

It is shown in [17] that the GPF deformable model can be used to efficiently segment com-

plex geometries from biomedical images. By using pixel or voxel interactions across the

whole image domain, the deformable model is more robust to image noise and weak edges.

The dynamic vector force field changes according to the relative postition and orientation be-

tween the geometries, which allows the deformable model to propagate through long tubular

structures. Here, the GPF deformable model is applied to segment the geometries of hu-

man carotid arteries from CT images. Some of the main challenges in the segmentation of

the carotid geometries include intensity inhomgeneity, weak edges and adjacent veins with

similar intensities to the carotids. In addition, calcifications which are attached to the arterial

walls should not be included in the reconstructed geometries. Although, the calcified plaques

often appear as relatively bright regions compared to soft tissues, plaques with lower den-

sities may have similar intensities to the lumen. As the intensities of the plaques vary with

the densities, it is not easy for techniques such as global intensity threshold to remove the

plaques from the extracted geometries. In this section, a simple heuristic region constraint

is added to the deformable model such that it does not propagate across the calcified re-

gions. This is done by constraining the deformable model from propagating across regions

with image gradient magnitude larger than a user specified value, Tmax. As the calcified re-

gions usually have relatively large image gradients, the threshold value can be easily selected

by observing the histogram of the image gradient magnitude. The deformable model with
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region constraint can thus be expressed as:

∂φ

∂ t
=



0 if |∇I|> Tmax
α gκ |∇φ |− (1−α)(F ·∇φ) otherwise

(2)

where α is a weighting parameter, g is the edge stopping function, κ is the curvature and F

is the geometric potential force defined in the GPF model [17].

3 Results

In this section, experimental results on the segmentation of the cartoid geometries using the

proposed framework are shown. Six datasets from CT imaging are used in the experiment.

The volumes of interest containing the carotid arteries are extracted from the image datasets

to reduce the size of the input datasets.

Figure 1 shows the segmentation of the carotid geometries using the GPF deformable

model with region constraint. The bidirectional and dynamic vector force allows the flexible

cross-boundary intializations of the model to easily propagate and converge to the geometries

of the carotid arteries. Note that the deformable model easily propagate through the stenotic

carotid bifurcations and get around the calcified regions to efficiently segment the carotid

geometries from the CT images.

The reconstructed vessel geometries using the proposed method are compared against ge-

ometries from manual segmentation. Figure 2 demonstrates the comparison of the extracted

geometries using random cross-section slices taken along the z-axis direction. The blue and

orange contours represent the cross-section of the geometries extracted manually and using

the GPF deformable model respectively. As shown in the figures, the image dataset consist

of other tissue structures which may affect the geometric reconstruction. In particular, ves-

sels adjacent to the carotid artery can often cause other models to leak out due to the similar

intensity. The geometric potential field provides a more coherent and global representation

of the object edges, and allows the deformable model to extract the geometry accurately.

By adding a region constraint, the proposed model can reasonably cope with the calcified

regions as the deformable model propagates through the tubular structures to segment the

vessel geometry. Quantitative analysis based on manual labelling showed promising result.

The average foreground accuracy, background accuracy and overall accuracy are 93.9%,

99.8% and 96.8%, respectively. Note, these are normalised accuracy measurement to reduce

measurement bias towards the large number of background voxels in the image.
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